Se CanadianSolar

Canada – Global Headquarters

Canadian Solar Inc. 545 Speedvale Avenue West, Guelph, Ontario, N1K 1E6 P +1 519 837 1881 F +1 519 837 2550 Sales Inquiries Email: info@canadiansolar.com Customer Support Email: service.ca@canadiansolar.com

Europe, Middle East & Africa

Canadian Solar EMEA GmbH Landsberger Straße 94, 80339 Munich, Germany P +49 (0) 89 519 968 90 F +49 (0) 89 519 968 911 Sales Inquiries Email: sales.emea@canadiansolar.com Customer Support Email: service.emea@canadiansolar.com

Australia

Canadian Solar MSS (Australia) Pty Ltd 44 Stephenson St, Cremorne VIC 3121, Australia P +61 (3) 860 918 44 Sales Inquiries Email: sales.au@canadiansolar.com Customer Support Email: service.au@canadiansolar.com

South East Asia

101 Thompson Road #15-03 United Square, Singapore 307591 P +65 6572 905 F +65 6559 4690 Sales Inquires Email: sales.sg@canadiansolar.com Customer Support Email: service.cn@canadiansolar.com

Latin America

Canadian Solar Brazil Avenida Roque Petroni Junior, 999, 4° andar Vila Gertrudes, São Paulo, Brasil,CEP 04707-910 P +55 11 3957 0336 Sales Inquiries Email:sales.br@canadiansolar.com Customer Support Email: service.latam@canadiansolar.com

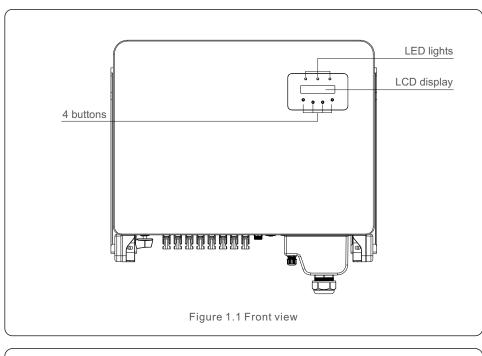
This manual is subject to change without prior notification. Copyright is reserved. Duplication of any part of this issue is prohibited without written permission.

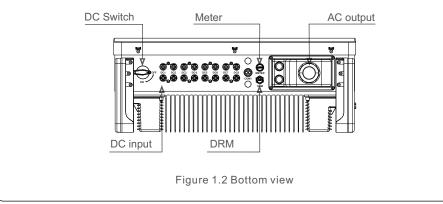
CSI GRID-TIED PV INVERTER INSTALLATION AND OPERATION MANUAL

CSI-25K-T400 | CSI-30K-T400 | CSI-33K-T400 CSI-36K-T400 | CSI-40K-T400 | CSI-40K-T500 | CSI-50K-T500

Version 1.0, Released Date: June, 2020

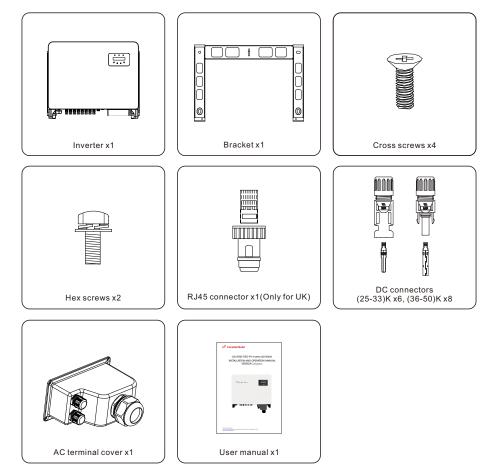
CANADIAN SOLAR INC. Canada, 545 Speedvale Avenue West, Guelph, Ontario, Canada N1K 1E6 www.canadiansolar.com


Contents


1. Introduction	2
1.1 Product Description	2
1.2 Packaging	3
2. Safety Instructions	4
2.1 Safety Symbols	4
2.2 General Safety Instructions	4
2.3 Notice For Use	5
3. Overview	6
3.1 Front Panel Display	6
3.2 LED Status Indicator Lights	6
3.3 Keypad	6
3.4 LCD	6
4. Product handing and storage	7
4.1 Product Handling	7
4.2 Product Storage	8
5. Installation	9
5.1 Select Location for the Inverter	9
5.2 Mounting the Inverter	11
5.3 Electrical Connections	13
6. Start & Stop	24
6.1 Start the Inverter	24
6.2 Stop the Inverter	24
7. Operation	25
7.1 Main Menu	25
7.2 Information	25
7.3 Settings	27
7.4 Advanced Info	28
7.5 Advanced Settings	31
8. Maintenance	37
9. Troubleshooting	
10. Specifications	40

1. Introduction

1.1 Product Description


This 3-phase inverter series contains 7 models, as listed here below: CSI-25K-T400GL02-E, CSI-30K-T400GL02-E, CSI-33K-T400GL02-E, CSI-36K-T400GL02-E, CSI-40K-T400GL02-E, CSI-40K-T500GL02-E and CSI-50K-T500GL02-E

1.2 Packaging

When you receive the inverter, please ensure that all the parts listed below are included:

If anything is missing, please contact your local Canadian Solar distributor.

2. Safety Instructions

2. Safety Instructions

2.1 Safety Symbols

Safety symbols used in this manual, which highlight potential safety risks and important safety information, are listed as follows:

WARNING:

WARNING symbol indicates important safety instructions, which if not correctly followed, could result in serious injury or death.

NOTE: NOTE symbol indicates important safety instructions, which if not correctly followed, could result in some damage or the destruction of the inverter.

CAUTION, RISK OF ELECTRIC SHOCK symbol indicates important safety instructions, which if not correctly followed, could result in electric shock.

CAUTION:

CAUTION, HOT SURFACE symbol indicates safety instructions, which if not correctly followed, could result in burns.

2.2 General Safety Instructions

WARNING:

Please don't connect PV array positive(+) or negative(-) to ground, it could cause serious damage to the inverter.

WARNING:

Electrical installations must be done in accordance with the local and national electrical safety standards.

WARNING:

To reduce the risk of fire, over-current protective devices (OCPD) are required for circuits connected to the inverter.

The DC OCPD shall be installed per local requirements. All photovoltaic source and output circuit conductors shall have disconnects that comply with the NEC Article 690, Part II. All Canadian Solar three phase inverters feature an integrated DC switch.

CAUTION:

Risk of electric shock. Do not remove the frontal cover of the inverter. There is no user serviceable parts inside. Refer servicing to qualified and accredited service technicians.

CAUTION:

The PV array (solar panels) supplies a DC voltage when they are exposed to sunlight, regardless if they are connected or not to an inverter.

CAUTION:

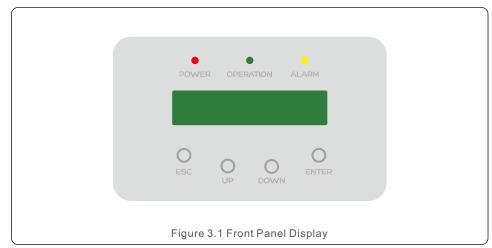
Risk of electric shock from energy stored in capacitors of the inverter. After disconnecting all power sources, do NOT remove the frontal cover of the inverter after at least 15 minutes.

Warranty may be voided if the cover is removed without explicit authorization.

CAUTION:

The surface temperature of the inverter can exceed 75°C (167F). To avoid risk of burns, DO NOT touch the surface of the inverter under operation.

The inverter must be installed out of reach of children.


2.3 Notice For Use

The inverter has been constructed according to the applicable safety and technical guidelines. Use the inverter in installations that meet the following specifications only:

- 1. Permanent installation is required.
- 2. The electrical installation must meet all the applicable regulations and standards.
- 3. The inverter must be installed according to the instructions stated in this manual.
- 4. The inverter must be installed according to the correct technical specifications.
- 5. To start up the inverter, please make sure the Grid Supply Main Switch (AC) is switched on, before switching on the DC side (solar array). To stop the inverter, please ensure that the inverter is disconnected from the grid before turning off the DC switch (solar array).

3. Overview

3.1 Front Panel Display

3.2 LED Status Indicator Lights

		Light	Status	Description
	1	POWER	ON	The inverter can detect DC power.
		POWER	OFF	No DC power or low DC power.
-	2		ON	The inverter is operating properly.
		OPERATION	OFF	The inverter has stopped to supply power.
			FLASHING	The inverter is initializing.
-	3 – Alarm		ON	Alarm or fault condition is detected.
			OFF	The inverter is operating without fault or alarm.
	Table 3.1 Status Indicator Lights			

3.3 Keypad

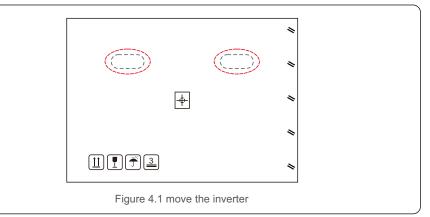
There are four keys in the front panel of the inverter (from left to right): ESC, UP, DOWN and ENTER keys. The keypad is used for:

- scrolling through the displayed options (the UP and DOWN keys);
- accessing or exiting submenus with adjustable settings (ESC and ENTER keys).

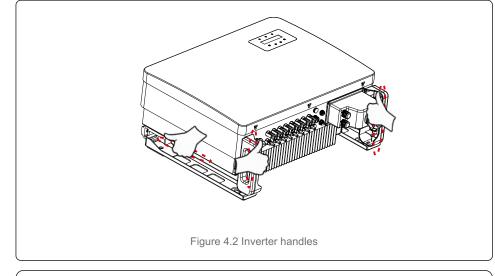
3.4 LCD

The two-line Liquid Crystal Display (LCD) is located on the front panel of the Inverter, which shows the following information:

• service messages for operator;


- inverter operation status and data;
- alarm messages and fault indications.

4. Product handing and storage


4.1 Product handling

Please review the instructions below for handling the inverter:

The red circles below denote cutouts on the product package.
 Push in the cutouts to form handles for moving the inverter (see Figure 4.1).

2.Open the carton, then two people handle both sides of inverter through the area denoted dotted line (see figure 4.2).

WARNING:

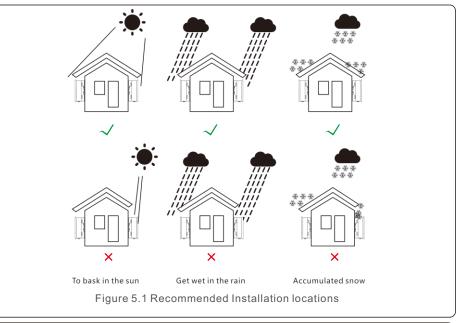
Be careful when lifting the inverter. The weight is approx 45kg.

4. Product handing and storage

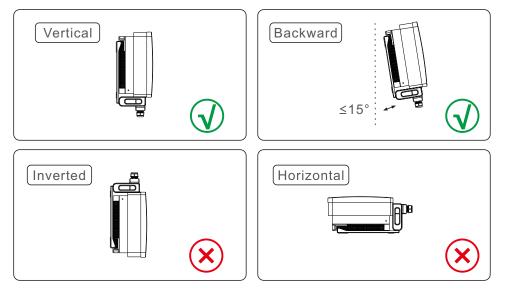
4.2 Product Storage

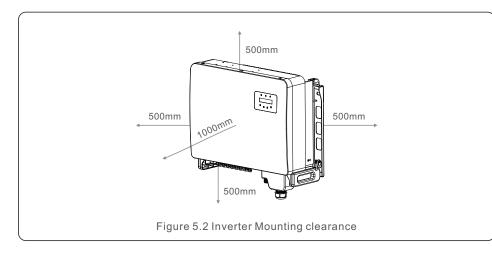
If the inverter is not to be installed immediately, storage instructions and environmental conditions are below:

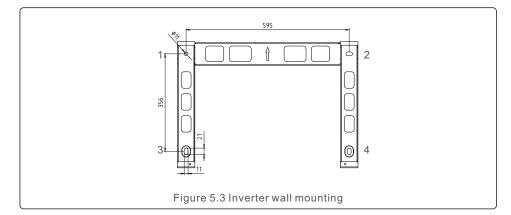
- Use the original box to repackage the inverter, seal with adhesive tape with the desiccant inside the box.
- Store the inverter(s) in a clean and dry place, free of dust and dirt.
- Storage temperature must be between -40°C and 70°C and the humidity should be between 0 and 100% non-condensing.
- Stack no more than three (3) inverters high.
- Keep box(es) away from corrosive materials to avoid damage to the inverter enclosure.
- Inspect packaging regularly. If packaging is damaged (wet, pest damage, etc), repackage the inverter immediately.
- Store the inverter(s) on a flat, hard surface not inclined or upside down.
- After long-term storage, the inverter needs to be fully examined and tested by qualified service or technical personnel before using.
- Restarting after a long period of non-use requires the equipment to be inspected and, in some cases, the removal of oxidation and dust that has settled inside the equipment will be required.


5.1 Select a Location for the Inverter

To select a location for the inverter, the following criteria should be considered:


WARNING: Risk of fire

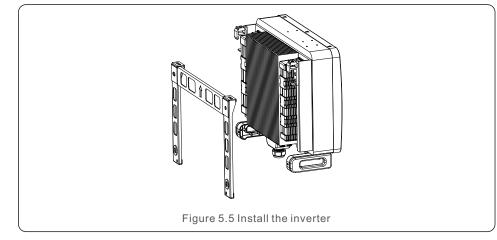

- Despite careful construction, electrical devices can cause fires.
- Do not install the inverter in areas containing highly flammable materials or gases.
- Do not install the inverter in potentially explosive environment.
- Do not install in small closed spaces where air can not circulate freely. To avoid overheating, always make sure the flow of air around the inverter is not blocked.
- Exposure to direct sunlight will increase the operational temperature of the inverter and may cause output power limiting. Canadian Solar recommends inverter installed to avoid direct sunlight or rain.
- To Avoid overheating, heating ambient air temperature must be considered when choosing the inverter installation location. Canadian Solar recommends using a sun shade minimizing direct sunlight when the ambient air temperature around the unit exceeds 104°F/40°C.



- Install on a vertical surface or structure capable of bearing the weight.
- Please install the inverter vertically. If the inverter cannot be mounted vertically, it may be tilted backward to 15 degrees from vertical.
- When multiple inverters are installed on site, a minimum clearance of 500mm, should be kept between each inverter and any other mounted equipment. The bottom of the inverter must be at least 500mm from the ground or floor. See figure 5.2.
- Visibility of the LED status indicator lights and LCD display screen should be considered.

5.2 Mounting the Inverter

Refer to figure 5.4 and figure 5.5. Inverter shall be installed vertically. The steps to install the inverter are listed below.


- 1. Refer to Figure 5.4, use the bracket as a template and drill the four holes accordingly. (Diameter=10mm, Depth=60mm).
- 2. Make sure the bracket is horizontal.
- 3. Use suitable expansion screws to fix the bracket on the wall. (Diameter=10mm, included in the package.)

WARNING: The inverte

The inverter must be mounted vertically, refer to section 5.1.

4. Lift the inverter and hang it on the bracket, and then slide down to make sure they match perfectly.

5. Use screws in the packaging to fix the inverter to the mount bracket.

5.3 Electrical Connections

The inverter is equipped with quick-connect terminals so the top cover doesn't need to be opened during the electrical connection.

DC 1 ~ DC 8	DC input terminal
ON	Switch on the DC switch
OFF	Switch off the DC switch
COM1	COM port for monitoring
METER	COM port for Meter
DRM	COM port for DRM
	Table 5.1 Electrical connection symbols

The electrical connection of the inverter must follow the steps listed below:

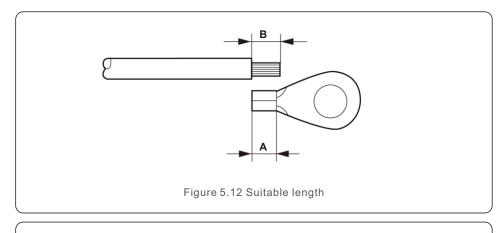
- 1. Switch OFF the Grid Supply Main Switch (AC).
- 2. Switch OFF the DC isolator. --> please note that previously it was called DC switch.
- 3. Connect the PV connectors from the array into the DC input of the inverter.

5.3.1 Grounding

Canadian Solar requires 2 ground protection methods: through grid terminal connection and external heat sink connection.

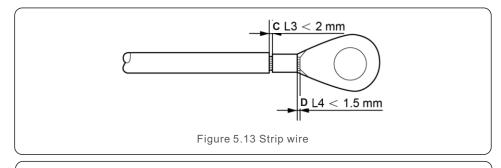
When connecting the AC terminal grounding cable, please refer to the contents of 5.3.3. When connecting the heat sink grounding cable, please follow the steps below:

1. Prepare the grounding cable: it is recommended to use a cable with cross-section of 16mm² or higher with outdoor rating.


2. Prepare OT terminals: M6, see Figure 5.12.

Important:

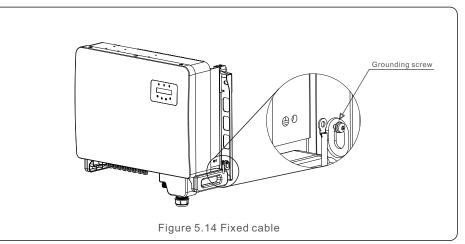
For multiple inverters in parallel, all inverters should be connected to the same ground point to eliminate the possibility of a voltage potential existing between inverter grounds.



Important:

P

B (insulation stripping length) is 2mm~3mm longer than A (OT cable terminal crimping area) 2mm~3mm.


4. Insert the stripped wire into the OT terminal crimping area and use the hydraulic clamp to crimp the terminal to the wire (see Figure 5.13).

Important:

After crimping the terminal to the wire, inspect the connection to ensure the terminal is solidly crimped to the wire.

- 5. Remove the screw from the heat sink ground point.
- 6. Connect the grounding cable to the grounding point on the heat sink, and tighten the grounding screw, Torque is 3-4Nm (see figure 5.14).

Important:

For improving anti-corrosion performance, after grounding cable is installed, apply silicone or paint as preferred for protection.

5.3.2 Connect PV side of inverter

Before connecting the inverter, please make sure the PV array open circuit voltage is within the limit of the inverter.

Before connection, please make sure the polarity of the output voltage of PV array matches the "DC+" and "DC-" symbols.

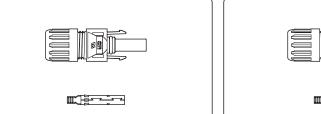
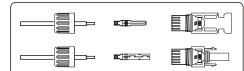


Figure 5.16 DC- Connector

Figure 5.15 DC+ Connector


Please use appropriate DC cable for PV system.

Cable type	Cross section (mm ²)		
Cable type	Range	Recommended value	
Industry generic PV cable (model:PV1-F)	4.0~6.0 (12~10AWG)	4.0 (12AWG)	

The steps to assemble the DC connectors are listed as follows:

- 1. Strip off the DC wire for about 7mm, Disassemble the connector cap nut. (see Figure 5.17)
- 2. Insert the wire into the connector cap nut and contact pin. (see Figure 5.18)
- 3. Crimp the contact pin to the wire using a proper wire crimper. (see Figure 5.19)
- 4. Insert metal connector into top of connector, and tighten nut with torque 3-4 Nm (see figure 5.20).

5. Measure PV voltage of DC input with multimeter, verify DC input cable polar (see figure 5.17), and ensure each string of PV voltage in range of inverter operation. Connect DC connector with inverter until hearing a slight clicking sound indicates connection succeed. (see figure 5.18)

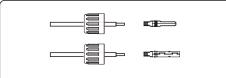
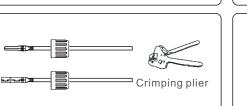



Figure 5.18 Insert the Wire into the

Connector Cap nut and contact pin

Figure 5.17 Disassemble the Connector Cap nut

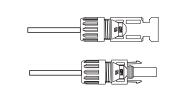
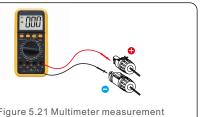
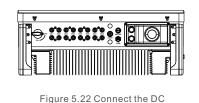




Figure 5.20 Connector with Cap nut Screwed on

Figure 5.19 Crimp the contact pin to the wire

Connectors to the Inverter

Figure 5.21 Multimeter measurement

Caution:

If DC inputs are accidently reversely connected or inverter is faulty or not working properly, it is NOT allowed to turn off the DC switch as it will damage the inverter and it may even lead to a fire.

The correct actions are:

· Use a clip-on ammeter to measure the DC string current.

- · if the current is higher than 0.5A, please wait until the solar irradiance decreases, so that the current value is below 0.5A.
- only when the current is below 0.5 A, it is allowed to switch off the DC switches and afterwards disconnect the PV strings.

Please note that any damages due to wrong operations are not covered by the warranty.

5.3.3 Connect grid side of inverter

For the AC connection, 10-35mm² cable is required to be used. Please make sure the resistance of cable is lower than 1.5ohm.

Cable specification		Copper-cored cable
Traverse cross	Range	10~35
sectional area (mm ²)	Recommended	25
Cable outer diameter	Range	22~32
(mm)	Recommended	27

NOTE:

For reliable connection, recommend customer select corresponding Euro type connectors based on wiring specification to connect the terminal.

The steps to assemble the AC grid terminals are listed as follows:

1. Strip the end of AC cable insulating jacket about 80mm then strip the end of each wire. (as shown in figure 5.23)

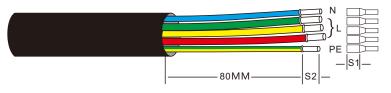
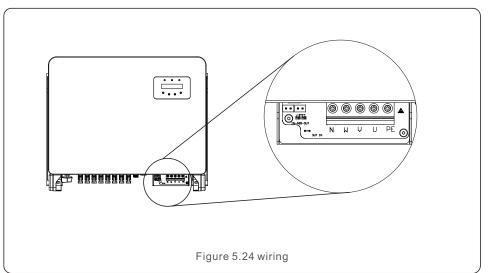
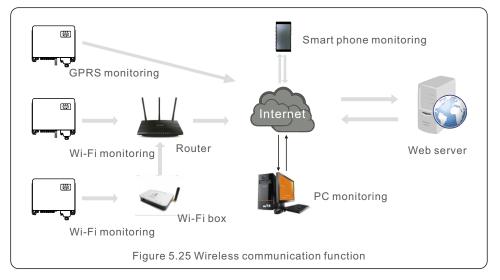


Figure 5.23 Strip AC cable

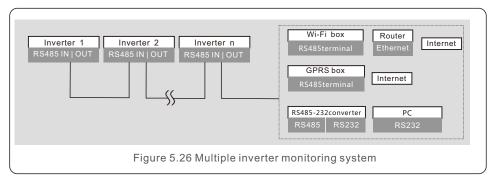

NOTE: S2 (insulation stripping length) should be as long as S1

(AC terminal cable compression area).

- 2. Strip the insulation of the wire past the cable crimping area of the OT terminal, then use a crimping tool to crimp the terminal. The crimped portion of the terminal must be insulated with heat shrinkable tube or insulating tape.
- 3. Leave the AC breaker disconnected to ensure it does not close unexpectedly.


 $4. \ensuremath{\,\text{Remove}}$ the 4 screws on the inverter junction box and remove the junction box cover .

5. Insert the cable through the nut, sheath, and AC terminal cover. Connect the cable to the AC terminal block in turn, using a socket wrench. Tighten the screws on the terminal block. The torque is $3 \sim 4$ Nm (as shown in Figure 5.24).



5.3.4 Inverter monitoring connection

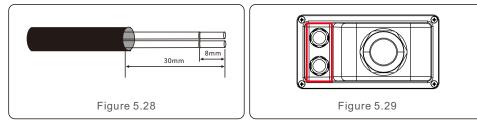
The inverter can be monitored via Wi-Fi or GPRS. All Canadian Solar communication devices are optional (Figure 5.25). For connection instructions, please refer to the Canadian Solar Monitoring Device installation manuals.

Monitoring system for multiple inverters

Multiple inverters can be monitored by RS-485 daisy chain configuration. (See figure 5.26).

5.3.4.1 RS485 Connection

Install the RS485 communication cables through the terminal block as shown in Figure 5.27. Recommended cable cross sectional area is 0.2 - 1.5mm², the cable outer diameter is 5mm -10mm, the cable length shall not exceed 3m.


Figure 5.27 RS485 Terminal Definition

NO.	Port definition	Description
1	RS485A1 IN	RS485A1,RS485 differential signal+
2	RS485B1 IN	RS485B1,RS485 differential signal-
3	RS485A2 OUT	RS485A2,RS485 differential signal+
4	RS485B2 OUT	RS485B2,RS485 differential signal-

Terminal block connection

a. Use a wire stripper to peel off the insulation layer of the communication cables to a certain length as shown in Figure 5.28.

b. Screw off the covers of "COM2" and "COM3" on the inverter as shown in Figure 5.29.

c. Insert the communication cables into the "COM2" and "COM3" ports.

d. Fasten the cables onto the pluggable terminals provided in the accessory package.

e. Match the pluggable terminals to the terminal block in the inverter and press to fasten it.

After cable installation, please remember to fasten the screws of the AC terminal cover in case of water damage.

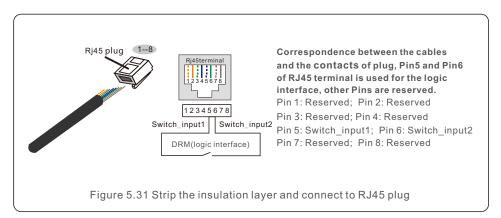
5.3.5 Max. over current protection device (OCPD)

To protect the inverter's AC grid connection conductors, Canadian Solar recommends installing breakers that will protect against overcurrent. The following table defines OCPD ratings for the Canadian Solar 25-50kW Three phase inverters.

Inverter	Rated voltage(V)	Rated output current (Amps)	Current for protection device (A)		
CSI-25K-T400GL02-E	380	36.0	50		
CSI-30K-T400GL02-E	380	43.3	63		
CSI-33K-T400GL02-E	380	47.6	63		
CSI-36K-T400GL02-E	380	51.9	80		
CSI-40K-T400GL02-E	380	57.7	80		
CSI-40K-T500GL02-E	480	48.1	63		
CSI-50K-T500GL02-E	480	60.1	80		
Table 5.3 Rating of grid OCPD					

5.3.6 Logic interface connection (Only for UK)

Logic interface is required by G98 and G99 standard that can be operated by a simple switch or contactor. When the switch is closed the inverter can operated normally. When the switch is opened, the inverter will reduce it's output power to zero within 5s.


Pin5 and Pin6 of RJ45 terminal is used for the logic interface connection.

Please follow below steps to assemble RJ45 connector.

1.Insert the network cable into the communication connection terminal of RJ45. (As shown in figure 5.30)

2.Use the network wire stripper to strip the insulation layer of the communication cable. According to the standard line sequence of figure 5.31 connect the wire to the plug of RJ45, and then use a network cable crimping tool to make it tight.

3.Connect RJ45 to DRM (logic interface).

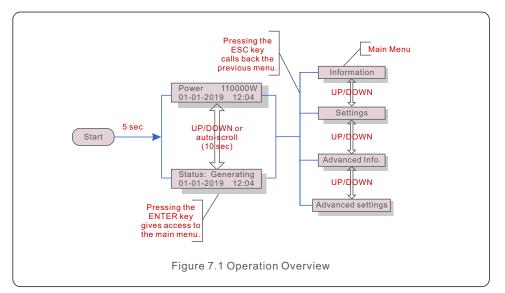
6. Start & Stop

6.1 Start the Inverter

To start the Inverter, it is important that the following steps are strictly followed:

- 1. Switch the grid supply main Switch (AC) ON first.
- 2. Switch the DC switch ON. If the voltage of PV arrays are higher than start up voltage, the inverter will initialize. The red LED power will light.
- 3. When both the DC and the AC sides supply to the inverter, it will be ready to generate power. Initially, the inverter will check both its internal parameters and the parameters of the AC grid, to ensure that they are within the acceptable limits. At the same time, the green LED will flash and the LCD displays the information of INITIALIZING.
- 4. After 30-300 seconds (depending on local requirement), the inverter will start to generate power. The green LED will be on continually and the LCD displays GENERATING.

WARNING:


Do not touch the surface when the inverter is operating. It may be hot and cause burns.

6.2 Stop the Inverter

To stop the Inverter, the following steps must be strictly followed:

- 1. Turn off the ac switch.
- 2. Put the DC SWITCH on the inverter in the position of "OFF" (See page 17 for the special note).

In normal operation, LCD screen alternatively shows inverter power and operation status (see Figure 7.1). The screen can be scrolled manually by pressing the UP/DOWN keys. Pressing the ENTER key gives access to Main Menu.

7.1 Main Menu

There are four submenus in the Main Menu (see Figure 7.1):

- 1. Information
- 2. Settings
- 3. Advanced Info.
- 4. Advanced Settings

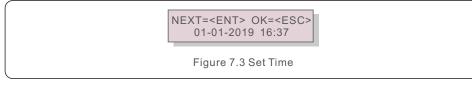
7.2 Information

The Canadian Solar three Phase Inverter main menu provides access to operational data and information. The information is displayed by selecting "Information" from the menu and then by scrolling up or down.

Display	Duration	Description	
V_DC01: 0000.0V i_DC01: 0000.0A	10 sec	V_DC01: Shows input DC voltage. I_DC01: Shows input DC current.	
V_A: 000.0V I_A: 000.0A	10 sec	V_A: Shows the grid's voltage value. I_A: Shows the grid's current value.	
V_C: 000.0V I_C: 000.0A	10 sec	V_C: Shows the grid's voltage value. I_C: Shows the grid's current value.	
Status: Generating Power: 0000W	10 sec	Status: Shows instant status of the Inverter. Power: Shows instant output power value.	
Rea_Power: 0000Var App_Power: 0000VA	10 sec	Rea_Power: Shows the reactive power of the inverter. App_Power: Shows the apparent power of the inverter.	
Grid Frequency F_Grid 00.00Hz	10 sec	F_Grid: Shows the grid's frequency value.	
Total Energy 0000000 kwh	10 sec	Total generated energy value.	
This Month: 0000kwh Last Month: 0000kwh	10 sec	This Month: Total energy generated this month. Last Month: Total energy generated last month.	
Today: 00.0kwh Yesterday: 00.0kwh	10 sec	Today: Total energy generated today. Yesterday: Total energy generated yesterday.	
Inverter SN 0000000000000	10 sec	Display series number of the inverter.	
Work Mode: NULL DRM NO.:08	10 sec	Work Mode: Shows current working mode. DRM NO.: Shows DRM Number.	
I_PV01: +05.0A I_PV02: +04.9A I_PV08: +05.2A	10 sec	I_PV01 : Shows input 01 current value. I_PV02 : Shows input 02 current value. I_PV08 : Shows input 08 current value.	
Table 7.1 Information list			

7.2.1 Lock screen

Pressing the ESC key returns to the Main Menu. Pressing the ENTER key locks (Figure 7.2(a)) or unlocks (Figure 7.2 (b)) the screen.


7.3 Settings

The following submenus are displayed when the Settings menu is selected:

- 1. Set Time
- 2. Set Address

7.3.1 Set Time

This function allows time and date setting. When this function is selected, the LCD will display a screen as shown in Figure 7.3.

Press the UP/DOWN keys to set time and data. Press the ENTER key to move from one digit to the next (from left to right). Press the ESC key to save the settings and return to the previous menu.

7.3.2 Set Address

This function is used to set the address when multiple inverters are connected to the monitoring system/control system.

The address number can be assigned from "01" to "99" (see Figure 7.4). The default address number of Canadian Solar Three Phase Inverter is "01".

Press the UP/DOWN keys to set the address. Press the ENTER key to save the settings. Press the ESC key to cancel the change and return to the previous menu.

7.4 Advanced Info - Technicians Only

NOTE:

To access to this area is for fully qualified and accredited technicians only. Enter menu "Advanced Info." and "Advanced settings" (need password).

Select "Advanced Info." from the Main Menu. The screen will require the password as below:

YES=<ENT> NO=<ESC> Password:0000

Figure 7.5 Enter password

After entering the correct password the Main Menu will display a screen and you will be able to access to the following information.

1. Alarm Message2. Running message3. Version4. Daily Energy5. Monthly Energy6. Yearly Energy7. Daily Records8. Communication Data9. Warning Message

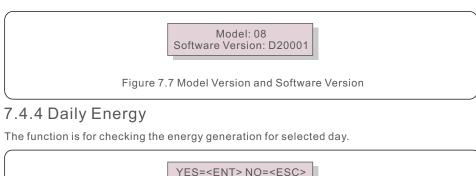
The screen can be scrolled manually by pressing the UP/DOWN keys. Pressing the ENTER key gives access to a submenu. Press the ESC key to return to the Main Menu.

7.4.1 Alarm Message

The display shows the 100 latest alarm messages (see Figure 7.6). Screens can be scrolled manually by pressing the UP/ DOWN keys. Press the ESC key to return to the previous menu.

Alm000: OV-G-V T: 00-00 00:00 D:0000

Figure 7.6 Alarm Message


7.4.2 Running Message

This function is for maintaince person to get running message such as internal temperature, Standard No.1,2,etc.

Screens can be scrolled manually by pressing the UP/DOWN keys.

7.4.3 Version

The screen shows the model version of the inverter. And the screen will show the software version by pressing the UP and DOWN at the same time.(see Figure 7.7).

Select: 2019-01-01 Figure 7.8 Select date for daily energy

Press DOWN key to move the cursor to day, month and year, press UP key to change the digit. Press Enter after the date is fixed.

Figure 7.9 Daily energy

Press UP/DOWN key to move one date from another.

7.4.5 Monthly Energy

The function is for checking the energy generation for selected month.

YES=<ENT> NO=<ESC> Select: 2019-01

Figure 7.10 Select month for monthly energy

Press DOWN key to move the cursor to day and month, press UP key to change the digit. Press Enter after the date is fixed.

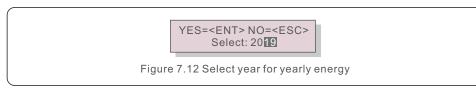

> 2019-01: 0510kWh 2019-02: 0610kWh

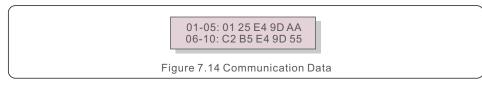
Figure 7.11 Month energy

Press UP/DOWN key to move one date from another.

7.4.6 Yearly Energy

The function is for checking the energy generation for selected year.

Press DOWN key to move the cursor to day and year, press UP key to change the digit. Press Enter after the date is fixed.


Press UP/DOWN key to move one date from another.

7.4.7 Daily records

The screen shows history of changing settings. Only for maintance personel.


7.4.8 Communication Data

The screen shows the internal data of the Inverter (see Figure 7.14), which is for service technicians only.

7.4.9 Warning Message

The display shows the 100 latest warning messages (see Figure 7.15). Screens can be scrolled manually by pressing the UP/ DOWN keys. Press the ESC key to return to the previous menu.

7.5 Advanced Settings - Technicians Only

To access to this area is for fully qualified and accredited technicians only. Please follow 7.4 to enter password to access this menu.

Select Advanced Settings from the Main Menu to access the following options: 1. Select Standard 2. Grid ON/OFF 3. Clear Energy 4. Reset Password 5. Power Control 6. Calibrate Energy 7. Special Settings 8. STD. Mode Settings 9. Restore Settings 10. HMI Update 11. External EPM set 12. Restart HMI 13. Debug Parameter 14.DSP Update 15. Compensation Set 16. I/V Curve

7.5.1 Selecting Standard

NOTE:

This function is used to select the grid's reference standard (see Figure 7.16).

Press the UP/DOWN keys to select the standard (G59/3, UL-480V, VDE0126, AS4777-15, AS4777-02, CQC380A, ENEL, UL-380V, MEX-CFE, C10/11 and "User-Def" function). Press the ENTER key to confirm the setting.

Press the ESC key to cancel changes and returns to previous menu.

Selecting the "User-Def" menu will access to the following submenu (see Figure 7.17),

→ OV-G-V1: 400V OV-G-V1-T: 1.0S Figure 7.17

The "User-Def" function can be only used by the service engineer and must be allowed by the local energy supplier.

Below is the setting range for "User-Def". Using this function, the limits can be changed manually.

OV-G-V1: 236335V	OV-G-F1: 50.2-53Hz(60.2-63Hz)
OV-G-V1-T: 0.19s	OV-G-F1-T: 0.19s
OV-G-V2: 248341V	OV-G-F2: 51-53Hz(61-63Hz)
OV-G-V2-T: 0.11s	OV-G-F2-T: 0.19s
UN-G-V1: 173236V	UN-G-F1: 47-49.5Hz(57-59.5Hz)
UN-G-V1-T: 0.19s	UN-G-F1-T: 0.19s
UN-G-V2: 132219V	UN-G-F2: 47-49Hz(57-59Hz)
UN-G-V2-T: 0.11s	UN-G-F2-T: 0.19s
Startup-T:10600S	Restore-T:10600S

Press the UP/DOWN keys to scroll through items. Press the ENTER key to edit the highlighted item. Press the UP/DOWN keys again to change the setting. Press the ENTER key to save the setting. Press the ESC key to cancel changes and returns to the previous menu.

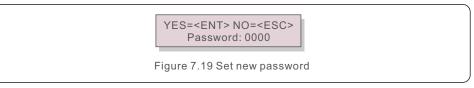
For different countries, the grid standard needs to be set as different according to local requirements. If there is any doubt, please consult service technicians for details.

7.5.2 Grid ON/OFF

This function is used to start up or stop the power generation of Three Phase Inverter (see Figure 7.18).

Screens can be scrolled manually by pressing the UP/DOWN keys. Press the ENTER key to save the setting. Press the ESC key to return to the previous menu.

7.5.3 Clear Energy


Clear Energy can reset the history yield of inverter

These two functions are applicable by maintenance personnel only, wrong operation will prevent the inverter from working properly.

7.5.4 Reset Password

This function is used to set the new password for menu "Advanced info." and "Advanced information" (see Figure 7.19).

Enter the right password before set new password. Press the DOWN key to move the cursor, Press the UP key to revise the value. Press the ENTER key to execute the setting. Press the ESC key to return to the previous menu.

7.5.5 Power control

Active and reactive power can be set through power setting button. There are 5 item for this sub menu:

1. Set output power 2. Set Reactive Power 3. Out_P With Restore 4. Rea_P With Restore 5. Select PF Curve

This function is applicable by maintenance personnel only, wrong operation will prevent the inverter from reaching maximum power.

7.5.6 Calibrate Energy

Maintenance or replacement could clear or cause a different value of total energy. Use this function could allow user to revise the value of total energy to the same value as before. If the monitoring website is used the data will be synchronous with this setting automatically. (see Figure 7.20).

YES=<ENT> NO=<ESC> Energy:0000000kWh

Figure 7.20 Calibrate energy

Press the DOWN key to move the cursor, Press the UP key to revise the value. Press the ENTER key to execute the setting. Press the ESC key to return to the previous menu.

7.5.7 Special Settings

This function is applicable by maintenance personnel only, wrong operation will prevent the inverter from reaching maximum power.

7.5.8 STD Mode settings

There are 5 setting under STD. Mode settings.

1. Working Mode Set 2. Power Rate Limit 3. Freq Derate Set

4. 10mins Voltage Set 5. Power Priority 6. Initial Settings

This function is applicable by maintenance personnel only, wrong operation will prevent the inverter from reaching maximum power.

7.5.9 Restore Settings

There are 5 items in initial setting submenu.

Restore setting could set all item in 7.5.7 special setting to default. The screen shows as below:

Press the Enter key to save the setting after setting grid off.

Press the ESC key to return the previous mean.

7.5.10 HMI Update

This function is used for updating the LCD program.

This function is applicable by maintenance personnel only, wrong operation will prevent the inverter from reaching maximum power.

7.5.11 External EPM Set

This function is turned on when the EPM is connected.

Figure 7.22 Set the Fail Safe ON/OFF

7.5.12 Restart HMI

The function is used for restart the HMI.

This function is applicable by maintenance personnel only, wrong operation will prevent the inverter from reaching maximum power.

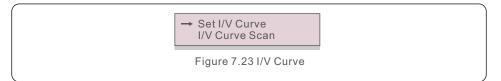
7.5.13 Debug Parameter

This function is used for manufacturer maintenance personnel only.

7.5.14 DSP Update

The function is used for update the DSP.

This function is applicable by maintenance personnel only, wrong operation will prevent the inverter from reaching maximum power.

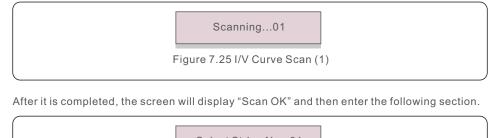

7.5.15 Compensation Set

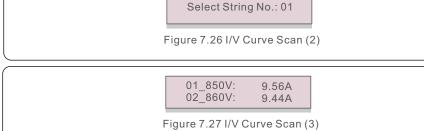
This function is applicable by maintenance personnel only, wrong operation will prevent the inverter from reaching maximum power.

7.5.16 I/V Curve

This function is used to scan the I/V characteristic curves of each PV strings.

7.5.16.1 Set I/V Curve


This setting can set the scanning voltage start point and the voltage interval.



Start_V: The start voltage of the I/V scan. (Adjustable from 300V-1000V) Interval_V: The scanning voltage interval.(Adjustable from 1-100V) In total, 60 data points can be scanned.

7.5.16.2 I/V Curve Scan

Press "ENT" to start the I/V curve scan

Canadian Solar Three Phase Inverter does not require any regular maintenance. However, cleaning the dust on heat-sink will help the inverter to dissipate the heat and increase its life time. The dust can be removed with a soft brush.

CAUTION:

Do not touch the inverter's surface when it is operating. Some parts of the inverter may be hot and cause burns. Turn off the inverter (refer to Section 6.2) and wait for a cool-down period before before any maintenance or cleaning operation.

The LCD and the LED status indicator lights can be cleaned with a damp cloth if they are too dirty to be read.

Never use any solvents, abrasives or corrosive materials to clean the inverter.

9. Troubleshooting

The inverter is designed in accordance with the most important international grid-tied standards and safety and electromagnetic compatibility requirements. Before delivering to the customer, the inverter has been subjected to several tests to ensure its optimal operation and reliability.

In case of failure, the LCD screen will display an alarm message. In this case, the inverter may stop feeding into the grid. The failure descriptions and their corresponding alarm messages are listed in Table 9.1:

9. Troubleshooting

Alarm Message	Failure description	Solution	
No power Inverter no power on LCD		 Check PV input connections. Check DC input voltage. (single phase >120V, three phase >350V) Check if PV+/- is reversed. 	
LCD show initializing all the time	Can not start-up	 Check if the connector on main board or power board are fixed. Check if the DSP connector to power board are fixed. 	
OV-G-V01/02/03/04 Over grid voltage		 Resistant of AC cable is too high. Change bigger size grid cable. Adjust the protection limit if it's allowed by electrical company. 	
UN-G-V01/02	Under grid voltage		
OV-G-F01/02	Over grid frequency	1. Use user define function to adjust the	
UN-G-F01/02	Under grid frequency	protection limit if it's allowed by electrical company.	
G-IMP	High grid impedance		
NO-GRID No grid voltage		 Check connections and grid switch. Check the grid voltage inside inverter terminal. 	
OV-DC01/02/03/04 Over DC voltage		1. Reduce the module number in series.	
OV-BUS	Over DC bus voltage	1. Check inverter inductor connection.	
UN-BUS01/02	Under DC bus voltage	2. Check driver connection.	
GRID-INTF01/02	Grid interference	1. Restart inverter. 2. Change power board.	
OV-G-I	Over grid current		
IGBT-OV-I	Over IGBT current		
DC-INTF DC input overcurrent OV-DCA-I		 Restart inverter. Identify and remove the string to the fault MPPT Change power board. 	
IGFOL-F	Grid current tracking fail		
IG-AD	Grid current sampling fail	1.Restart inverter or contact installer.	
OV-TEM Over Temperature		 Check inverter surrounding ventilation. Check if there's sunshine direct on inverter in hot weather. 	
INI-FAULT Initialization system fault			
DSP-B-FAULT	Comm. failure between main and slave DSP	1. Restart inverter or contact installer.	
12Power-FAULT	12V power supply fault		
PV ISO-PRO 01/02 PV isolation protection		 Remove all DC input, reconnect and restart inverter one by one. Identify which string cause the fault and check the isolation of the string. 	

Alarm Message	Failure description	Solution	
ILeak-PRO 01/02/03/04 Leakage current protection		1. Check AC and DC connection. 2. Check inverter inside cable connection.	
RelayChk-FAIL	Relay check fail		
DCinj-FAULT	High DC injection current	 1. Restart inverter or contact installer. 	
Reve-DC	One of the DC string is reversely connected	1. Please check the inverters' PV string polarity if there are strings reversely connected wait for the night when the solar irradiance is low and th PV string current down below 0.5A. Turn off the two DC switchs and fix the polarity issue.	
Screen OFF with DC applied	Inverter internally damaged	 Do not turn off the DC switches as it will damage the inverter. Please wait for the solar irradiance reduce and confirm the string current is less than 0.5A with a clip-on ammeter and then turn off the DC switches. Please note that any damages due to wron operations are not covered in the device warranty. 	

Table 9.1 Fault message and description

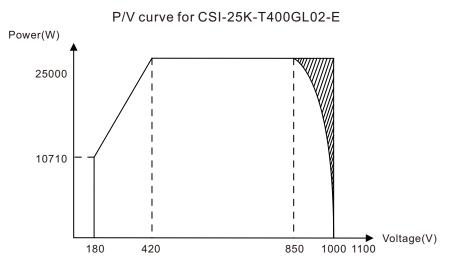
NOTE:

If the inverter displays any alarm message as listed in Table 9.1; please turn off the inverter (refer to Section 5.2 to stop your inverter) and wait for 15 minutes before restarting it (refer to Section 5.1 to start your inverter). If the failure persists, please contact your local distributor or the service center. Please keep ready with you the following information before contacting us.

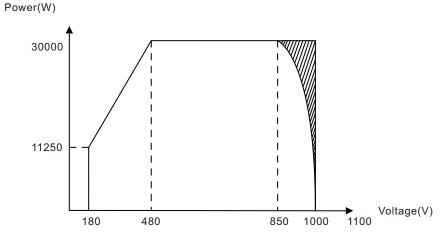
- 1. Serial number of Three Phase Inverter.
- 2. The distributor/dealer of Three Phase Inverter (if available).
- 3. Installation date.
- 4. The description of problem (i.e. the alarm message displayed on the LCD and the status of the LED status indicator lights. Other readings obtained from the Information submenu (refer to Section 6.2) will also be helpful.).
- 5. The PV array configuration (e.g. number of panels, capacity of panels, number of strings, etc.).6. Your contact details.

Model	CSI-25K-T400GL02-E
Max. DC input power (Watts)	33000
Max. DC input voltage (Volts)	1100
Rated DC voltage (Volts)	600
Start-up voltage (Volts)	180
MPPT voltage range (Volts)	2001000
Max. input current (Amps)	26+26+26
Max short circuit input current (Amps)	40+40+40
MPPT number/Max input strings number	3/6
Rated output power (Watts)	25000
Max. output power (Watts)	27500
Max. apparent output power (VA)	27500
Rated grid voltage (Volts)	3/N/PE~400
Rated output current (Amps)	36.0
Power Factor (at rated output power)	0.8leading~0.8lagging
THDi (at rated output power)	<3%
Rated grid frequency (Hertz)	50/60
Operating frequency range (Hertz)	4762
Max.efficiency	98.8%
EU efficiency	98.3%
MPPT efficiency	> 99.5%
Dimensions (W*H*D)	647*629*252 (mm)
Weight	45kg
Тороlоду	Transformerless
Operating ambient temperature range	-25℃+60℃
Ingress protection	IP65
Noise emission (typical)	< 30 dB(A)
Cooling concept	Natural convection
Max.operation altitude	4000m
Designed lifetime	>20 years
Operating surroundings humidity	0100% Condensing
Connention	MC4 connector
Display	LCD, 2×20 Z.
Communication connections	RS485/Ethernet
Monitoring	WiFi or GPRS

Model	CSI-30K-T400GL02-E	
Max. DC input power (Watts)	39000	
Max. DC input voltage (Volts)	1100	
Rated DC voltage (Volts)	600	
Start-up voltage (Volts)	180	
MPPT voltage range (Volts)	2001000	
Max. input current (Amps)	26+26+26	
Max short circuit input current (Amps)	40+40+40	
MPPT number/Max input strings number	3/6	
Rated output power (Watts)	30000	
Max. output power (Watts)	33000	
Max. apparent output power (VA)	33000	
Rated grid voltage (Volts)	3/N/PE~400	
Rated output current (Amps)	43.3	
Power Factor (at rated output power)	0.8leading~0.8lagging	
THDi (at rated output power)	<3%	
Rated grid frequency (Hertz)	50/60	
Operating frequency range (Hertz)	4762	
Max.efficiency	98.8%	
EU efficiency	98.3%	
MPPT efficiency	>99.5%	
Dimensions (W*H*D)	647*629*252 (mm)	
Weight	45kg	
Тороlogy	Transformerless	
Operating ambient temperature range	-25℃+60℃	
Ingress protection	IP65	
Noise emission (typical)	< 30 dB(A)	
Cooling concept	Natural convection	
Max.operation altitude	4000m	
Designed lifetime	>20 years	
Operating surroundings humidity	0100% Condensing	
Connention	MC4 connector	
Display	LCD, 2×20 Z.	
Communication connections	RS485/Ethernet	
Monitoring	WiFi or GPRS	

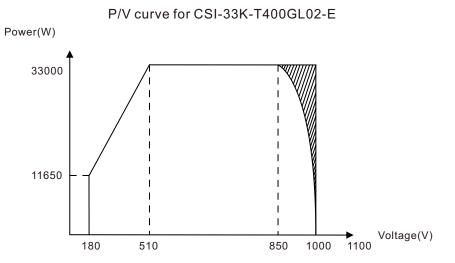

Model	CSI-33K-T400GL02-E	
Max. DC input power (Watts)	43000	
Max. DC input voltage (Volts)	1100	
Rated DC voltage (Volts)	600	
Start-up voltage (Volts)	180	
MPPT voltage range (Volts)	2001000	
Max. input current (Amps)	26+26+26	
Max short circuit input current (Amps)	40+40+40	
MPPT number/Max input strings number	3/6	
Rated output power (Watts)	33000	
Max. output power (Watts)	36300	
Max. apparent output power (VA)	36300	
Rated grid voltage (Volts)	3/N/PE~400	
Rated output current (Amps)	47.6	
Power Factor (at rated output power)	0.8leading~0.8lagging	
THDi (at rated output power)	<3%	
Rated grid frequency (Hertz)	50/60	
Operating frequency range (Hertz)	4762	
Max.efficiency	98.8%	
EU efficiency	98.3%	
MPPT efficiency	> 99.5%	
Dimensions (W*H*D)	647*629*252 (mm)	
Weight	45kg	
Тороlоду	Transformerless	
Operating ambient temperature range	-25℃+60℃	
Ingress protection	IP65	
Noise emission (typical)	< 30 dB(A)	
Cooling concept	Natural convection	
Max.operation altitude	4000m	
Designed lifetime	>20 years	
Operating surroundings humidity	0100% Condensing	
Connention	MC4 connector	
Display	LCD, 2×20 Z.	
Communication connections	RS485/Ethernet	
Monitoring	WiFi or GPRS	

Model	CSI-36K-T400GL02-E	
Max. DC input power (Watts)	47000	
Max. DC input voltage (Volts)	1100	
Rated DC voltage (Volts)	600	
Start-up voltage (Volts)	180	
MPPT voltage range (Volts)	2001000	
Max. input current (Amps)	26+26+26+26	
Max short circuit input current (Amps)	40+40+40+40	
MPPT number/Max input strings number	4/8	
Rated output power (Watts)	36000	
Max. output power (Watts)	39600	
Max. apparent output power (VA)	39600	
Rated grid voltage (Volts)	3/N/PE~400	
Rated output current (Amps)	51.9	
Power Factor (at rated output power)	0.8leading~0.8lagging	
THDi (at rated output power)	<3%	
Rated grid frequency (Hertz)	50/60	
Operating frequency range (Hertz)	4762	
Max.efficiency	98.8%	
EU efficiency	98.3%	
MPPT efficiency	>99.5%	
Dimensions (W*H*D)	647*629*252 (mm)	
Weight	45kg	
Тороlоду	Transformerless	
Operating ambient temperature range	- 25 ℃ +60 ℃	
Ingress protection	IP65	
Noise emission (typical)	< 30 dB(A)	
Cooling concept	Natural convection	
Max.operation altitude	4000m	
Designed lifetime	>20 years	
Operating surroundings humidity	0100% Condensing	
Connention	MC4 connector	
Display	LCD, 2×20 Z.	
Communication connections	RS485/Ethernet	
Monitoring	WiFi or GPRS	

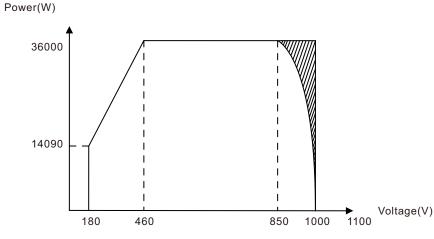

Model	CSI-40K-T400GL02-E	
Max. DC input power (Watts)	52000	
Max. DC input voltage (Volts)	1100	
Rated DC voltage (Volts)	600	
Start-up voltage (Volts)	180	
MPPT voltage range (Volts)	2001000	
Max. input current (Amps)	26+26+26+26	
Max short circuit input current (Amps)	40+40+40	
MPPT number/Max input strings number	4/8	
Rated output power (Watts)	40000	
Max. output power (Watts)	44000	
Max. apparent output power (VA)	44000	
Rated grid voltage (Volts)	3/N/PE~400	
Rated output current (Amps)	57.7	
Power Factor (at rated output power)	0.8leading~0.8lagging	
THDi (at rated output power)	<3%	
Rated grid frequency (Hertz)	50/60	
Operating frequency range (Hertz)	4762	
Max.efficiency	98.8%	
EU efficiency	98.3%	
MPPT efficiency	>99.5%	
Dimensions (W*H*D)	647*629*252 (mm)	
Weight	45kg	
Тороlоду	Transformerless	
Operating ambient temperature range	-25℃+60℃	
Ingress protection	IP65	
Noise emission (typical)	< 30 dB(A)	
Cooling concept	Natural convection	
Max.operation altitude	4000m	
Designed lifetime	>20 years	
Operating surroundings humidity	0100% Condensing	
Connention	MC4 connector	
Display	LCD, 2×20 Z.	
Communication connections	RS485/Ethernet	
Monitoring	WiFi or GPRS	

Model	CSI-40K-T500GL02-E	
Max. DC input power (Watts)	52000	
Max. DC input voltage (Volts)	1100	
Rated DC voltage (Volts)	600	
Start-up voltage (Volts)	180	
MPPT voltage range (Volts)	2001000	
Max. input current (Amps)	26+26+26+26	
Max short circuit input current (Amps)	40+40+40	
MPPT number/Max input strings number	4/8	
Rated output power (Watts)	40000	
Max. output power (Watts)	44000	
Max. apparent output power (VA)	44000	
Rated grid voltage (Volts)	3/N/PE~480	
Rated output current (Amps)	48.1	
Power Factor (at rated output power)	0.8leading~0.8lagging	
THDi (at rated output power)	<3%	
Rated grid frequency (Hertz)	50/60	
Operating frequency range (Hertz)	4762	
Max.efficiency	98.8%	
EU efficiency	98.3%	
MPPT efficiency	> 99.5%	
Dimensions (W*H*D)	647*629*252 (mm)	
Weight	45kg	
Тороlоду	Transformerless	
Operating ambient temperature range	- 25 ℃ +60 ℃	
Ingress protection	IP65	
Noise emission (typical)	< 30 dB(A)	
Cooling concept	Natural convection	
Max.operation altitude	4000m	
Designed lifetime	>20 years	
Operating surroundings humidity	0100% Condensing	
Connention	MC4 connector	
Display	LCD, 2×20 Z.	
Communication connections	RS485/Ethernet	
Monitoring	WiFi or GPRS	

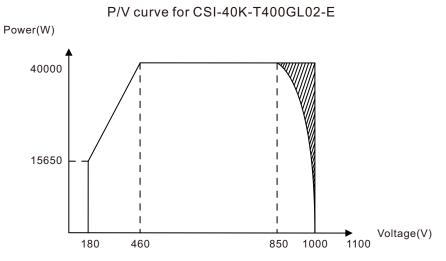
Model	CSI-50K-T500GL02-E	
Max. DC input power (Watts)	65000	
Max. DC input voltage (Volts)	1100	
Rated DC voltage (Volts)	600	
Start-up voltage (Volts)	180	
MPPT voltage range (Volts)	2001000	
Max. input current (Amps)	26+26+26+26	
Max short circuit input current (Amps)	40+40+40	
MPPT number/Max input strings number	4/8	
Rated output power (Watts)	50000	
Max. output power (Watts)	55000	
Max. apparent output power (VA)	55000	
Rated grid voltage (Volts)	3/N/PE~480	
Rated output current (Amps)	60.1	
Power Factor (at rated output power)	0.8leading~0.8lagging	
THDi (at rated output power)	<3%	
Rated grid frequency (Hertz)	50/60	
Operating frequency range (Hertz)	4762	
Max.efficiency	98.8%	
EU efficiency	98.3%	
MPPT efficiency	> 99.5%	
Dimensions (W*H*D)	647*629*252 (mm)	
Weight	45kg	
Тороlogy	Transformerless	
Operating ambient temperature range	- 25 ℃ +60 ℃	
Ingress protection	IP65	
Noise emission (typical)	< 30 dB(A)	
Cooling concept	Natural convection	
Max.operation altitude	4000m	
Designed lifetime	>20 years	
Operating surroundings humidity	0100% Condensing	
Connention	MC4 connector	
Display	LCD, 2×20 Z.	
Communication connections	RS485/Ethernet	
Monitoring	WiFi or GPRS	



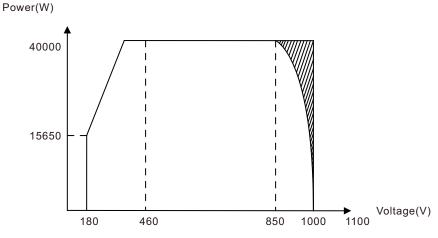
▲ Figure 10.1 CSI-25K-T400GL02-E Inverter output power by input voltage


▲ Figure 10.2 CSI-30K-T400GL02-E Inverter output power by input voltage

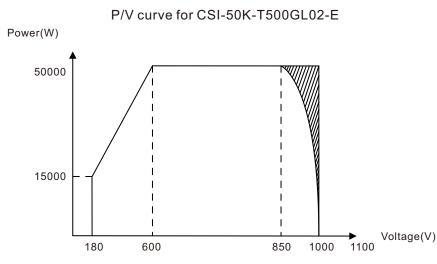
P/V curve for CSI-30K-T400GL02-E



▲ Figure 10.3 CSI-33K-T400GL02-E Inverter output power by input voltage


P/V curve for CSI-36K-T400GL02-E

▲ Figure 10.4 CSI-36K-T400GL02-E Inverter output power by input voltage



▲ Figure 10.5 CSI-40K-T400GL02-E Inverter output power by input voltage

▲ Figure 10.6 CSI-40K-T500GL02-E Inverter output power by input voltage

P/V curve for CSI-40K-T500GL02-E

▲ Figure 10.7 CSI-50K-T500GL02-E Inverter output power by input voltage

LOCATION ______ NUMBER _____

INSTALLATION AND COMMISSIONING CHECKLIST

3 PHASE STRING INVERTERS (SERIES)

Step	No.	Content	Details	Values / Notes	Conclusion
	1	Installation environment	Ensure installation site meets environmental and physical constraints.		[]Good []Poor
	2	Unpacking	Check inverter condition after unpacking.		[]Good []Poor
	3	Mounting bracket installation	Install inverter mounting bracket according to installation instructions in user manual. For allowable tilt angle refer to the installation manual.		[] Completed Record Tilt Angle in Notes
z	4	Inverter installation	Carefully install the inverter to the mounting bracket and ensure it is firmly attached. Ensure the inverter has proper clearances and are properly ventilated.		[] Completed
INSTALLATION	5	Serial number	Record the product serial numbers located on the side label.		Serial Numbers; attached list
TALL	6	Solar modules	Confirm PV module installation completion. Record the total power of the PV modules.		[] Completed Record kWp in Notes
INS	7	DC input and AC output connection	Switch off the DC and AC distribution unit, connect DC to PV terminals of inverter, and connect AC to AC terminals of inverter. Ensure proper polarity and cable size. Torque to specifications.		[] Completed Record Torque in Notes
	8	PV voltage	Measure and record DC voltage. Ensure voltage and polarities are correct. Confirm the voltages are within 5% tolerance to what was tested.		[] Completed Record Y _c in Notes
	9	AC grid	Measure and record AC voltage and frequency. Confirm the $V_{\rm AC}$ voltages are within 5% tolerance to what was tested.		[] Completed Record ¥ _c in Notes
	10	Grounding cable	Ensure ground cable is firmly attached to grounding lug.		[]Good []Poor

LOCATION ______ NUMBER _____

INSTALLATION AND COMMISSIONING CHECKLIST

3 PHASE STRING INVERTERS (SERIES)

Step	No.	Content	Details	Values / Notes	Conclusion
	1	Communication cable (if function is used)	Connect the RS485 cable to the communication port.		[] Completed
COMMISSIONING	2	Supply DC / AC power	 CSI-25K-T400GL02-E, CSI-30K-T400GL02-E, CSI-33K-T400GL02-E, CSI-36K-T400GL02-E, CSI-40K-T400GL02-E, CSI-40K-T500GL02-E, CSI-50K-T500GL02-E : Switch the grid supply main Switch (AC) ON first. Switch the DC switch ON. If the voltages of PV arrays are higher than start up voltage, the inverter will turn on. The red LED power will be continuously lit. When both the DC and the AC sides supply to the inverter, it will be ready to generate power. Initially, the inverter will check both its internal parameters and the parameters of the AC grid, to ensure that they are within the acceptable limits. At the same time, the green LED will lash and the LCD displays the information of INITIALIZING. 		[] Completed Record LEDs status in Notes

PROJECT NAME_____

LOCATION ______ NUMBER _____

INSTALLATION AND COMMISSIONING CHECKLIST

3 PHASE STRING INVERTERS (SERIES)

Step	No.	Content	Details	Values / Notes	Conclusion
	3	Waiting time	CSI-xxK-Txxx-GI: After 60-300 seconds (depending on local requirement), the inverter will start to generate power. The green LED will be on continuously and the LCD displays the information of GENERATING.		[] Completed Record LEDs status in Notes
۶D	4	Power generation	After grid connection, record power output of inverter.		[] Completed Record power in Notes
COMMISSIONING	5	Date & Time setting	Set the current date and time using the front panel interface.		[] Completed Record current date/time in Notes
	6	Communication setting (if avail.)	Set communication with a unique address for each inverter.		[] Completed Record address in Notes
	7	Machine version	For maintenance and reference, please record the firmware revisions if applicable.		[] Completed Record with serial numbers
	8	Operating parameter	Record operating parameters of the inverter. Verify IEC62109 or the corresponding On-grid setting is selected. De-rate inverter and attach de-rate sticker as required.		[] Completed Record operating parameters in Notes
	9	Testing	Open and close the DC breaker to conirm whether the inverter reboots and shuts down automatically.		[] Reboot successful [] Not rebooting
	10	Completion	Installation and commissioning is complete if no abnormality.		[] Good [] Issues detected

PROJECT N	AME	
-----------	-----	--

LOCATION ______ NUMBER _____

INSTALLATION AND COMMISSIONING CHECKLIST

3 PHASE STRING INVERTERS (SERIES)

System Owner:			
Address / Location:		Note site typical arrangements and variances	
Inverter model:		Inverter firmware revision: DSP:	_ LCD:
Number of inverters:	Inverter mounting tilt:		
Output power*:	Input DC voltage:	Insulation limit (K):	_ PV start-up voltage:
Grid: V Max: V Mi <u>n:</u>	Frequency Max: Min:	Reactive compensation:	_ +/- PF
Configuration: MPPT Individual	MPPT Parallel		
Monitoring: RS485:	Ethernet:	Monitoring equipment and supplier:	
PV module manufacturer:	PV model:		
DC cable size:	AC cable size:	Transformer ratings, supplier:	
Number of series connected modules in I	PV strings:		
Number of PV strings in parallel per MPP	T <u>. </u>		
Total System size (DC Watts):		*Specify de-rated power and add nameplate power in parenthesis	
GENERAL COMMENTS / OBSERVATIONS	5:		

PROJECT NAME_____

LOCATION ______ NUMBER _____

INSTALLATION AND COMMISSIONING CHECKLIST

3 PHASE STRING INVERTERS (SERIES)

Warning: This checklist is not a replacement for the user manual. Please read the user manual prior to inverter site selection and installation.

Inverter serial numbers:

1		22
2		23
3		24
4		25
5		26
6		27
7		28
8		29
9		30
10		31
11		32
12		33
13		34
14		35
15		36
16		37
17		38
18		39
19		40
20		41
21		42
INS	STALLER'S NAME	COMPANY
INS	STALLER'S SIGNATURE	DATE
	www.canadiansolar.com	Please return completed form to inverter register@canadiansolar.com